Fatigue behavior of double-edge notched oxide/oxide ceramic matrix composite in a combustion environment

Author:

Singh Abhendra K1,Sabelkin Volodymyr1,Mall Shankar1

Affiliation:

1. Department of Aeronautics and Astronautics, Air Force Institute of Technology, OH, USA

Abstract

Tension–tension fatigue tests in a combustion environment were performed on double-edge notched oxide/oxide ceramic matrix composite specimens. The composite, designated as N720/A, constituted woven 0°/90° Nextel™720 fibers in alumina matrix. Monotonic tensile and cyclic loads at a frequency of 1 Hz and a stress ratio of 0.05 were applied on the specimens in a combustion environment. The maximum specimen temperature due to combustion flame impingement in the notch region was 1250 ± 50℃. A stiffness reduction of less than 10% evaluated for the run-out specimens showed the harsh combustion environment had a minimal effect on specimen degradation. The residual strength was evaluated to be ∼75%–85% the strength of non-fatigued (virgin) double-edge notch specimens in room temperature. The monotonic tensile strength and the fatigue limit for 90,000 cycles (run-out) were found to be ∼40 MPa less in the combustion environment when compared to published results for 1200℃ laboratory air environment. The damage mechanisms were also the same in the two environments. Finite element analyses showed that the reduction in strength and fatigue limit in the combustion environment (as compared to the laboratory air environment) was due to the presence of thermal gradient stresses because of non-uniform specimen temperature distribution.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3