Affiliation:
1. Department of Mechanical Engineering, Korea, Advanced Institute of Science and Technology, ME3221, Kusong-dong, Yusong-gu Taejon-shi, Korea 305-701
Abstract
Duringthe curingprocess of thick glass/epoxy composite laminates, substantial amounts of temperature lagand overshoot at the center of the laminates is usually experienced due to the large thickness and low thermal conductivity of the glass/epoxy composites, which require a long time for full and uniform consolidation. In this work, the temperature profiles of a 20mm thick unidirectional glass/epoxy laminate duringan autoclave vacuum bag process were measured and compared with the numerically calculated results. For the calculation of distributions of the temperature, degree of cure, resin pressure, exothermic heat and required time for full consolidation by three-dimensional finite element analyses, the effects of convective heat transfer coefficient and geometry of mold and bagging assembly on the temperature profiles were taken into consideration. Based on the numerical results, an optimized cure cycle with the coolingand reheatingsteps was developed by minimizingthe objective function to reduce the temperature overshoot in the composite. From the experimental and numerical results, it was found that the measured temperature profiles were in good agreement with the numerical ones, and conventional cure cycles recommended by prepregmanufacturers for thin laminates should be modified to prevent temperature overshoot and to obtain full consolidation.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献