Cure Cycle for Thick Glass/Epoxy Composite Laminates

Author:

Oh Je Hoon1,Lee Dai Gil1

Affiliation:

1. Department of Mechanical Engineering, Korea, Advanced Institute of Science and Technology, ME3221, Kusong-dong, Yusong-gu Taejon-shi, Korea 305-701

Abstract

Duringthe curingprocess of thick glass/epoxy composite laminates, substantial amounts of temperature lagand overshoot at the center of the laminates is usually experienced due to the large thickness and low thermal conductivity of the glass/epoxy composites, which require a long time for full and uniform consolidation. In this work, the temperature profiles of a 20mm thick unidirectional glass/epoxy laminate duringan autoclave vacuum bag process were measured and compared with the numerically calculated results. For the calculation of distributions of the temperature, degree of cure, resin pressure, exothermic heat and required time for full consolidation by three-dimensional finite element analyses, the effects of convective heat transfer coefficient and geometry of mold and bagging assembly on the temperature profiles were taken into consideration. Based on the numerical results, an optimized cure cycle with the coolingand reheatingsteps was developed by minimizingthe objective function to reduce the temperature overshoot in the composite. From the experimental and numerical results, it was found that the measured temperature profiles were in good agreement with the numerical ones, and conventional cure cycles recommended by prepregmanufacturers for thin laminates should be modified to prevent temperature overshoot and to obtain full consolidation.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3