Effect of Fiber Arrangement on Residual Thermal Stress Distributions in a Unidirectional Composite

Author:

Jin Kyo Kook,Oh Je Hoon1,Ha Sung Kyu2

Affiliation:

1. Hanyang Structures and Composites Laboratory, Department of Mechanical Engineering, Hanyang University, 1271 Sa1-dong Sangrok-gu, Ansan-shi, Gyeonggi-do, 426-791, Korea

2. Hanyang Structures and Composites Laboratory, Department of Mechanical Engineering, Hanyang University, 1271 Sa1-dong Sangrok-gu, Ansan-shi, Gyeonggi-do, 426-791, Korea;

Abstract

A three-dimensional finite element analysis is performed to investigate the effects of fiber arrangements on the residual thermal stresses in unidirectional composites of various fiber volume fractions (FVFs). The fiber arrangements include the regular fiber arrays (square and hexagonal arrays) and a random fiber array. Normal, tangential, and shear stresses at the fiber–matrix interface are first obtained using unit cells of the regular square and hexagonal fiber arrays. To simulate better real fiber arrangements, random fiber distribution is modeled and analyzed using a finite element analysis. Statistical distributions of residual thermal stresses are obtained for various FVFs and compared with the results from regular fiber arrays. The effects of constituent material properties of composites on thermal stresses are also taken into consideration. The results indicate that the random arrangement of fibers has a significant influence on residual thermal stresses especially at high FVFs. The mode stresses of the random fibers are well estimated using the square array whereas the mean stresses are better predicted from the hexagonal array. It is shown that predicted coefficients of thermal expansion are not influenced by the microstructure of composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3