Eco-friendly and multifunctional aluminum flake/carbon fiber/cellulose composite papers with electromagnetic interference shielding

Author:

Yildirim Ferhat1ORCID

Affiliation:

1. Department of Machinery and Metal Technologies, Biga Vocational School, Çanakkale Onsekiz Mart University, Biga, Republic of Türkiye

Abstract

Recycling every viable material to produce new value-added products not only reduces waste, but also provides an opportunity to create sustainable and innovative solutions while preserving our natural resources. With this motivation, electrically conductive one-dimensional carbon fibers and two-dimensional aluminum flakes reinforced cellulose matrix composite papers were manufactured using recycled materials with a scalable, eco-friendly, and low-cost papermaking process. The designed composite paper showed 36.1 dB electromagnetic interference shielding efficiency (EMSE) with an absorbance-dominated performance by absorbing 98.85% of electromagnetic waves. An efficient impedance matching was obtained on the composite paper surface using reinforcements with different morphologies. Cellulose paper samples were converted to electrically conductive composites (0.415 S/cm), and the electrical conductivity was altered by tailoring the reinforcement ratios. Thermo-mechanical test results revealed that the cellulose matrix’s storage modulus was increased from 1.44 to 2.1 GPa with a 46.5% improvement. The composite cellulose paper represented increased hydrophilicity with higher porosity. The environmentally friendly composite paper responses to the escalating environmental worries and possesses a tremendous possibility of being utilized as an electromagnetic shielding material.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellulose-inspired approaches to sustainable EMI shielding materials: A comprehensive review;International Journal of Biological Macromolecules;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3