Affiliation:
1. Composite Materials Development Department Sandia Laboratories Albuquerque, New Mexico 87115
Abstract
Properties of carbon-felt, pyrolytic carbon-matrix composites have been measured as a function of fiber precursor [rayon and polyacrylonitrile (PAN)] and matrix microstructure (smooth laminar, rough laminar, and isotropic). The primary matrix effect is caused by the graphitic nature of the heat-treated rough laminar matrix which yields a high composite thermal conductivity. The increased modulus of the PAN-based fibers results in increased composite strength and modulus and a significantly reduced thermal expansion. A heat-treated, PAN-based carbon felt, rough laminar carbon matrix composite has a superior thermal shock figure-of-merit based on these results.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献