The effects of fiber’s surface roughness on the mechanical properties of fiber-reinforced polymer composites

Author:

Yao Yin1,Chen Shaohua1

Affiliation:

1. Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

Abstract

An improved shear-lag model is developed in this paper to study the effects of interface roughness on the mechanical properties of unidirectional fiber-reinforced polymer composites with a staggered structure, in which the roughness is incorporated by establishing equilibrium equations for the fiber platelets with varying thickness along its axial direction. The stress transfer and effective Young’s modulus of composites are mainly investigated due to the influence of fiber’s surface roughness. Since the polymer matrix can be chosen as thermoplastic or thermosetting materials, a uniformly interfacial shear stress distribution due to the frictional transfer along fiber/matrix interfaces and a non-uniformly one due to the elastic transfer are analyzed, respectively. It is found that when the surface roughness becomes larger, fibers in the former will carry more tensile loads, while the tensile loads keep almost invariant in fibers and the shear stress reduces in matrix in the latter. Moreover, the effective Young’s modulus of composites will be enhanced due to increasing fiber’s surface roughness. However, the enhancing effect will gradually reduce with an increasing aspect ratio of fibers. The results should be very useful for the design of novel fiber-reinforced polymer composites, especially for those that needed interfacial modifications in order to improve the interfacial adhesion, for example, carbon-fiber reinforced polymer composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3