Mechanical properties and thermal stability of hot-rolled Al–15%B4C composite sheets containing Sc and Zr at elevated temperature

Author:

Qin Jian1,Zhang Zhan1,Chen X-Grant1

Affiliation:

1. Department of Applied Science, University of Quebec at Chicoutimi, Canada

Abstract

The microstructure, mechanical properties, thermal stability and tensile fracture of two hot-rolled Al-15 vol.% B4C composite sheets (S40 with 0.4 wt.% Sc and SZ40 with 0.4 wt.% Sc and 0.24 wt.% Zr) were investigated. During multi-pass hot rolling, coarse Al3Sc or Al3(Sc, Zr) precipitations appeared and resulted in the loss of most of their hardening effect. In an appropriate post-rolling heat treatment, the hot-rolled sheets regained a significant precipitation hardening because of the precipitation of fine nanoscale Al3Sc and Al3(Sc,Zr) that uniformly distributed in the aluminum matrix. After the peak aging, the ultimate tensile strength at ambient temperature of the S40 and SZ40 sheets can reach 198 MPa and 215 MPa, respectively. During 2000 h of annealing at 300℃, the strengths at ambient temperature of both S40 and SZ40 composite sheets slowly decreased with increasing annealing time. However, the tensile strengths at 300℃ of both S40 and SZ40 composite sheets remained nearly unchanged and were less sensitive to the annealing time and more tolerable for precipitate coarsening, which demonstrated an excellent long-term thermal stability of both materials at elevated temperature. The tensile fracture at ambient temperature of both S40 and SZ40 composite sheets was dominated by the brittle B4C particle fracture, whereas the interfacial decohesion of B4C particles became the prominent characteristic of the fracture at 300℃.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3