Analytical and numerical assessment of the effect of highly conductive inclusions distribution on the thermal conductivity of particulate composites

Author:

Khan Kamran A1ORCID,Hajeri Falah Al2,Khan Muhammad A3

Affiliation:

1. Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE

2. Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE

3. School of Aerospace, Transport and Manufacturing, Cranfield University, UK

Abstract

Highly conductive composites have found applications in thermal management, and the effective thermal conductivity plays a vital role in understanding the thermo-mechanical behavior of advanced composites. Experimental studies show that when highly conductive inclusions embedded in a polymeric matrix the particle forms conductive chain that drastically increase the effective thermal conductivity of two-phase particulate composites. In this study, we introduce a random network three dimensional (3D) percolation model which closely represent the experimentally observed scenario of the formation of the conductive chain by spherical particles. The prediction of the effective thermal conductivity obtained from percolation models is compared with the conventional micromechanical models of particulate composites having the cubical arrangement, the hexagonal arrangement and the random distribution of the spheres. In addition to that, the capabilities of predicting the effective thermal conductivity of a composite by different analytical models, micromechanical models, and, numerical models are also discussed and compared with the experimental data available in the literature. The results showed that random network percolation models give reasonable estimates of the effective thermal conductivity of the highly conductive particulate composites only in some cases. It is found that the developed percolation models perfectly represent the case of conduction through a composite containing randomly suspended interacting spheres and yield effective thermal conductivity results close to Jeffery's model. It is concluded that a more refined random network percolation model with the directional conductive chain of spheres should be developed to predict the effective thermal conductivity of advanced composites containing highly conductive inclusions.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3