Experimental and numerical investigation of damage evolution in carbon fiber reinforced polymer stiffened panel in post-buckling regime

Author:

Bouslama Nidhal1ORCID,Maslouhi Ahmed1,Masson Patrice1

Affiliation:

1. Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada

Abstract

Stiffened composite panels have been extensively used thanks to their ability to withstand high load and large deflection. However, their nonlinear behavior and complex damage modes during the post-buckling regime remain challenging and still require research work to improve understanding. In the current study, the buckling and post-buckling responses of a hat-stiffened panel made with carbon fiber reinforced polymer composite material are investigated experimentally and numerically with identifying the damage process and its effect on the panel stiffness. The experimental analysis is achieved by performing quasi-static multi-step compressive loading up to failure with full displacement assessment. A Structural Health Monitoring strategy is also deployed for registering and localizing the Acoustic Emission (AE) activities during each run. Matrix data extracted from the AE waveforms are processed and classified with respect to damage mechanism. Additionally, this research proposes predictive Finite Element Model based on Progressive Failure Analysis. Modified Chang-Chang failure criteria is adopted and implemented using Ansys Usermat subroutine. Numerical and experimental data have been compared and good agreement is demonstrated.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3