Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethane

Author:

Reis JML1ORCID,Machado JJM2ORCID,Marques EAS2,Carbas RJC2ORCID,da Silva Lucas FM3

Affiliation:

1. Theoretical and Applied Mechanics Laboratory – LMTA, Mechanical Engineering Department – TEM, Universidade Federal Fluminense – UFF, Brazil

2. Instituto de Ciência e Inovação em Engenharia Mecanica e Engenharia Industrial (INEGI), Portugal

3. Departamento de Engenharia Mecanica, Faculdade de Engenharia (FEUP), Universidade do Porto, Portugal

Abstract

Composite structures currently used in the oil industry must meet strict requirements for design and safety reasons. They need to maintain strength under varied displacement rates throughout its lifetime. It is therefore critical to fully understand the fracture behavior of such composites. This work presents experimental results regarding the influence of a range of displacement rates on the fracture energy in mode I, GIc, of glass fiber reinforced polyurethane used in the oil industry to repair and reinforce pipelines with corrosion damage. To determine GIc as a function of displacement rate, double cantilever beam specimens were tested, with displacement rates of 2, 20 and 200 mm/min with different thicknesses. A complementary numerical study was performed with the aim of predicting strength using the measured values. This work has demonstrated a significant influence of the strain rate and composite thickness on GIC of the composite materials, with higher rates and thicker specimens causing an increase in the GIC values.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3