Affiliation:
1. Laboratory of Composite Materials and Adaptive Structures, ETH Zurich, Zurich, Switzerland
Abstract
In this study, nanoalumina (Al2O3) and nanosilica (SiO2) particles are evaluated as tougheners for a high glass-transition temperature (Tg) epoxy system in correlation with liquid composite molding (LCM) processability. The aim of this paper is to directly compare the effectiveness of nanoalumina and nanosilica of the same nominal particle size as epoxy tougheners on the same neat resin system. The epoxy resin system used in this study was Dow D.E.R. 330 amine cured epoxy with a Tg of 150℃. Both particle types are observed to be Tg neutral and increase fracture toughness of the base epoxy system. Between the two particle types, nanoalumina is found to be more effective than nanosilica in terms of achievable fracture toughness at a given particle loading. As resin viscosity increases with particle addition, the addition of fewer particles with the use of nanoalumina is also beneficial to LCM processing where a lower viscosity is preferable.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献