Reuse potential of functionalized thermoplastic waste as reinforcement for thermoset polymers: Mechanical properties and erosion resistance

Author:

Kovačević Tihomir1ORCID,Brzić Saša12,Kalagasidis Krušić Melina3,Nešić Jovica1,Radović Ljubica1,Dojčinović Marina3,Rusmirović Jelena1

Affiliation:

1. Military Technical Institute, Ministry of Defence, Serbia

2. Military Academy, University of Defence, Serbia

3. Faculty of Technology and Metallurgy, University of Belgrade, Serbia

Abstract

Two types of polymer waste materials, poly(ethylene terephthalate) (PET) and polycarbonate based Colombian Resin (CR-39), were used for the designing of fully recycled composite materials. Waste PET was employed for the synthesis of thermoset unsaturated polyester resin (UPR), while CR-39 was used as reinforcement in the UPR matrix. Prior to mixing, CR-39 particles were subjected to oxidation and chemical activation using acids/base and ethanol amine, respectively. The effect of the modifier type and variable loading of the activated CR-39 particles on mechanical and dynamic-mechanical properties of the corresponding composites was investigated. The greatest improvement in the tensile and flexural strength of UPR resin was achieved with the composite containing 0.5 wt% of amine activated filler particles, 96.0% and 62.2%, respectively. The Arrhenius equation was used to calculate the activation energy for glass transition from dynamic mechanical properties measured at various frequencies. The activation energy of the main transition for UPR resin and composites were calculated to be 173 and 350 kJ·mol−1 indicating that reinforcement results in an increase in the energy barrier to macromolecules viscoelastic relaxation. In addition, erosion resistance was studied during exposure of samples to cavitation tests. According to the obtained results, these materials can be applied in construction and mining industry.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3