The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P(AN-VAc) nanofiber mats/PP spunbond

Author:

Tiyek İsmail1ORCID,Yazıcı Mustafa2,Alma Mehmet Hakkı3,Karataş Şükrü4

Affiliation:

1. Textile Engineering Department, Engineering and Architecture Faculty, Kahramanmaraş Sütçü İmam University, Turkey

2. Mathematics and Science Education Department, Education Faculty, Kahramanmaraş Sütçü İmam University, Turkey

3. Industrial Engineering of Forestry Department, Forestry Faculty, Kahramanmaraş Sütçü İmam University, Turkey

4. Physics Department, Science and Letters Faculty, Kahramanmaraş Sütçü İmam University, Turkey

Abstract

In this study, the production of an electromagnetic shielding material by doping reduced graphene oxide was aimed. Graphene oxide was produced from graphite through modified Hummer's method, and reduced graphene oxide was obtained by reducing graphene oxide. The reduced graphene oxide- doped poly(acrylonitrile-co-vinyl acetate) nanofiber mats were spun on the Polypropylene spunbond fabrics by a multi-needle electrospinning device at different lap numbers. Multi-layered surface samples of spunbond/nanofiber mats were obtained via calendaring process after overlapping in different layer numbers. The electromagnetic shielding effectiveness (EMSE) of these samples was measured in the range of 0.03–1.5 GHz according to ASTM D4935 standard. The effects of the numbers of laps and layers on the electromagnetic shielding effectiveness of the mats were also investigated. It was found that electromagnetic shielding effectiveness is greatly affected by changing the numbers of laps and layers. Consequently, the highest electromagnetic shielding effectiveness value of 35.49 dB was obtained from the sample containing two layers of nanofiber mats, each of which consisted 50 laps of nanofibers.

Funder

Kahramanmaraş Sütçü Ïmam University, BAP (Scientific Researc Projects) unit

TUBITAK

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3