Affiliation:
1. School of Aerospace Engineering and Applied Mechanics, Tongji University, P.R. China
Abstract
In this paper, a finite element model (FEM) was developed to investigate failure mechanism and compression after impact (CAI) strength of woven carbon fibre reinforced polymer (CFRP) after low-velocity impact (LVI) subjected to biaxial compressive loading. A built-in VUMAT user-defined material subroutine was adopted to take into account the in-plane damage and intralaminar delamination under LVI loading and in-plane compression. The LVI response, failure pattern, and residual mechanical properties under uniaxial compression were compared to the available experimental data to verify the numerical model. The damage initiation, subsequent evolution, final failure modes, and residual strength of the composite laminates with LVI damages subjected to biaxial compressive loading are presented by numerical methods, and the effects of impact energy and impactor diameter on the residual strength of the laminates are discussed.
Funder
Fund of National Postdoctoral Program for Innovative Talents
China Postdoctoral Science Foundation
National Science Fund for Distinguished Young Scholars
Shanghai Pujiang Program
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献