Investigation of nano-hybridization effects on low velocity impact behaviors of basalt fiber reinforced composites

Author:

Demirci İbrahim1ORCID,Avcı Ahmet2,Demirci Mehmet Turan3ORCID

Affiliation:

1. Department of Mechatronic Engineering, Selçuk University, Turkey

2. Department of Biomedical Engineering, Necmettin Erbakan University, Turkey

3. Department of Metallurgy and Materials Engineering, Selçuk University, Turkey

Abstract

In general the nanoparticles increase the mechanical and impact behaviors of fiber reinforced polymer based composites. However, the effects of the hybridization of nanoparticles and their reasons over the nano scale fracture mechanisms have not been adequately studied for fiber reinforced composites. In this study, the low velocity impact responses and the mechanical behaviors were investigated for 4%wt. SiO2 nanoparticles filled BFR/Epoxy nanocomposites, 0.5%wt. MWCNTs filled BFR/Epoxy nanocomposites, 4%wt. SiO2 nanoparticles and 0.5%wt. MWCNTs nano-hybrid filled BFR/Epoxy nanocomposites and unfilled BFR/Epoxy composites. The tensile and low velocity impact tests at 10 J and 20 J of energy levels were applied to nanoparticles, nano-hybrid and unfilled BFR/Epoxy composites in order to define the effects of nanoparticles and nano-hybrid particles on the impact and mechanical features according to in accordance with ASTM D3039/D3039M-14 and ASTM D7136/7136M standards. It was observed that SiO2 nanoparticles addition to BFR/Epoxy for both 10 J and 20 J showed the highest tensile strength, maximum force, rebound energy and the lowest displacements and absorbed energy. SiO2+MWCNTs nano-hybrid addition to BFR/Epoxy improved higher low velocity impact responses and tensile strength than MWCNTs addition. The specimens of unfilled BFR/Epoxy composites showed the lowest tensile strength and maximum force and the highest maximum force, displacements and absorbed energy. Microscope and SEM analyses demonstrated that minimum failures like fiber breakages, delamination and debonding were observed by filling SiO2 nanoparticles provided the nano scale fracture mechanisms. In addition MWCNTs hybridization with SiO2 nanoparticles minimizes negative effects of MWCNTs micro size length and improved the impact and mechanical behaviors.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3