Fracture toughness and fractographic investigation of polybutylene terephthalate/thermoplastic polyurethane binary blends reinforced by multi-walled carbon nanotubes using essential work of fracture approach

Author:

Chalabi Tehran Ata1,Heidari Farshad1,Chakherlou Tajbakhsh Navid1ORCID,Najjar Reza2

Affiliation:

1. Plastics and Composites Engineering Division, Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2. Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

In this paper, fracture toughness evaluation of polybutylene terephthalate (PBT)/thermoplastic polyurethane (TPU) binary blends and PBT/TPU/carbon nanotubes (CNTs) ternary nanocomposites have been conducted using both Izod impact and quasi-static fracture tests. Essential work of fracture (EWF) approach is used to study the fracture properties in details. The results of EWF tests revealed an effective role of TPU and CNTs in toughening mechanism of binary blends and ternary nanocomposites. According to EWF results, both the crack resistance and plastic deformation energies promoted in all compounds as compared to neat PBT. Energy dissipation in the yielding and tearing stages determined by the energy partitioning method. The obtained results indicated that displacement up to the failure point increased by increasing the TPU content, while inclusion of CNTs reduced this quantity. The specific non-essential work of fracture [Formula: see text] , [Formula: see text], and [Formula: see text] increased with increasing the TPU contents which is confirmed by load-displacement curves. Whereas, addition of CNTs reduced [Formula: see text] and [Formula: see text] values as compared to reference binary blend, however, ternary nanocomposites still have higher values as compared to pure PBT. In contrast with EWF results, high strain rate of impact test prevents the activation of toughness improving mechanisms that readily occurs in quasi-static loading.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3