Electrical and piezoresistive properties of cement composites with carbon nanomaterials

Author:

Yoo Doo-Yeol1,You Ilhwan2,Youn Hyunchul3,Lee Seung-Jung4

Affiliation:

1. Department of Architectural Engineering, Hanyang University, Republic of Korea

2. School of Civil, Environmental and Architectural Engineering, Korea University, Republic of Korea

3. Graduate School of Architecture and Urban Design, Washington University in St. Louis, USA

4. Advanced Railroad Civil Engineering Division, Korea Railroad Research Institute, Republic of Korea

Abstract

This study investigates the effect of nanomaterials on the piezoresistive sensing capacity of cement-based composites. Three different nanomaterials—multi-walled carbon nanotubes, graphite nanofibers, and graphene oxide—were considered along with a plain mortar, and a cyclic compressive test was performed. Based on a preliminary test, the optimum flowability was determined to be 150 mm in terms of fiber dispersion. The electrical resistivity of the composites substantially decreased by incorporating 1 wt% multi-walled carbon nanotubes, but only slightly decreased by including 1 wt% graphite nanofibers and graphene oxide. This indicates that the use of multi-walled carbon nanotubes is most effective in improving the conductivity of the composites compared to the use of graphite nanofibers and graphene oxide. The fractional change in resistivity of the composites with nanomaterials exhibited similar behavior to that of the cyclic compressive load, but partial reversibility in fractional change in resistivity was obtained beyond 60% of the peak load. A linear relationship between the fractional change in resistivity and cyclic compression strain (up to 1500 με) was observed in the composites with multi-walled carbon nanotubes, and the gauge factor was found to be 166.6. It is concluded that cement-based composites with 1 wt% multi-walled carbon nanotubes can be used as piezoresistive sensors for monitoring the stress/strain generated in concrete structures.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3