Ablation mechanism and properties of silica fiber-reinforced composite upon oxyacetylene torch exposure

Author:

Shi Shengbo1,Gong Chunlin1,Liang Jun2,Fang Guodong2,Wen Lihua1,Gu Liangxian1

Affiliation:

1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, P.R. China

2. Science and Technology on Advanced Composites in Special Environments Key Laboratory, Harbin Institute of Technology, P.R. China

Abstract

The mechanism of mass loss and endothermic properties of silica fiber-reinforced phenolic composites during ablation were investigated in this paper. A theoretical prediction model combining the surface ablation theory and heat transfer theory of heat shield was developed to study the surface ablation behavior. In the formulation of the mathematical model, the effect of the moving boundary on the thermal response was considered, which results from the surface recession of the material in the thickness direction during ablation. The surface ablation recession rate and wall temperature of silica fiber-reinforced phenolic composite specimen were measured using an oxyacetylene torch experimental platform. Then, the efficiency of the model was verified by comparing calculation and experimental results. According to the principles of energy conservation on the ablated surface of the material, the proportion formulas of the heat absorption induced by individual endothermic mechanisms and the total heat absorption were derived. Similarly, the proportions of the mass loss caused by individual mass loss mechanisms were also given. Finally, variations of the ablation properties of the silica fiber-reinforced phenolic composites versus thermal exposure time were calculated and analyzed.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3