Static strength prediction in laminated composites by using discrete damage modeling

Author:

Hoos Kevin1,Iarve Endel V2,Braginsky Michael1,Zhou Eric1,Mollenhauer David H3

Affiliation:

1. Multiscale Composites and Polymers Division, University of Dayton Research Institute, Dayton OH, USA

2. Mechanical and Aerospace Engineering, University of Texas at Arlington Arlington TX, USA

3. Air Force Research Laboratory, Wright Patterson AFB, USA

Abstract

Discrete Damage Modeling of complex local failure patterns in laminated composites including matrix cracking, delamination, and fiber failure was performed. Discrete Damage Modeling uses the Regularized eXtended Finite Element Method for the simulation of matrix cracking at initially unknown locations and directions independent of the mesh orientation. Cohesive interface model is used both for Mesh Independent Cracking as well as delamination propagation. The fiber failure mode is modeled by two different methods in tension and compression. Tensile failure is predicted by Critical Failure Volume criterion, which takes into account volumetric scaling of tensile strength. Compression fiber failure is simulated with a single parameter continuum damage mechanics model with non-compressibility condition in the failed region. Ply level characterization input data were used for prediction of notched and unnotched laminate strength. All input data required for model application is directly measured by ASTM tests except tensile fiber scaling parameter and compression fiber failure fracture toughness, which were taken from literature sources. The model contains no internal calibration parameters. Tensile and compressive strength of unnotched and open hole composite laminates IM7/977-3 has been predicted and compared with experimental data. Three different layups, [0/45/90/−45]2S, [30/60/90/−60/−30]2S, and the [60/0/−60]3S, were modeled and tested and showed good agreement with experiment in the case of tensile loading, whereas the compressive strength was generally under predicted for unnotched laminates and overpredicted for open hole laminates.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3