Evaluation of mechanical and dynamic mechanical properties of multiwalled carbon nanotube-based ethylene–propylene copolymer composites mixed by masterbatch dilution

Author:

Hoikkanen Maija1,Poikelispää Minna1,Das Amit12,Reuter Uta2,Dierkes Wilma13,Vuorinen Jyrki1

Affiliation:

1. Department of Materials Science, Tampere University of Technology, Finland

2. Leibniz Institute of Polymer Research Dresden, Germany

3. Department of Elastomer Technology and Engineering, University of Twente, the Netherlands

Abstract

A two-step masterbatch mixing technique was studied for preparation of carbon nanotube-filled ethylene–propylene diene elastomer compounds, and compared to conventional one-step mixing process. In the two-step process, a masterbatch compound with carbon nanotube content of 50 parts per hundred was prepared by melt-mixing ethylene–propylene diene elastomer. This material was then compounded with pristine ethylene–propylene diene elastomer and composites with different carbon nanotube concentrations were compared. The aim of this study is to compare the efficiency of two different mixing processes on the dispersion of carbon nanotubes and to facilitate the handling of carbon nanotubes, as the masterbatch can be prepared in a controlled way and used for further dilution without the problems related to carbon nanotube processing. The compound properties were studied with emphasis on mechanical characterization and dynamic mechanical thermal analysis. Masterbatch mixing resulted in the similar mechanical properties of the composites compared to the direct mixing method. At the relatively low loadings of carbon nanotubes, the considerable improvements of the mechanical properties were observed. The aspect ratio of the carbon nanotubes determined by transmission electron microscope was found to be similar to the one calculated from the Guth equation. It showed a considerable reduction in aspect ratio independent of the used mixing method.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3