Experimental and numerical investigation of AS4/8552 interlaminar shear strength under impact loading conditions

Author:

Perogamvros Nikolaos G1,Lampeas George N1

Affiliation:

1. Laboratory of Technology and Strength of Materials, Mechanical Engineering and Aeronautics Department, University of Patras, Greece

Abstract

The interlaminar shear behavior of AS4/8552 laminated short beam shear (SBS) coupons were experimentally and numerically investigated under static and impact loading conditions. Experiments were conducted in a range from quasi-static (1.7 × 10−5 m/s) to 3.9 m/s impact velocity using a testing device (ILSS device) that has been developed and adapted in a universal testing machine and a drop tower apparatus. Regarding the interlaminar shear strength (ILSS) values, the experimental investigation showed a low to medium strain rate sensitivity with a 23% maximum ILSS decrease observed at the samples which were tested with the maximum impact speed. In the finite element framework, the novel “stacked shell” or “2.5D” approach is investigated in the simulation of the SBS impact tests; models comprising four stacked sublaminate arrangements were capable of predicting the respective experimental results, with the maximum deviations from the respective experimental data to appear in the cases of high impact velocity.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3