Comprehensive inter-fibre failure analysis and failure criteria comparison for composite materials using micromechanical modelling under biaxial loading

Author:

Wan Lei1ORCID,Ullah Zahur1ORCID,Yang Dongmin2ORCID,Falzon Brian G.13

Affiliation:

1. Advanced Composites Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, UK

2. Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh, UK

3. School of Engineering, STEM College, RMIT University, Melbourne, VIC, Australia

Abstract

Inter-fibre failure analysis of carbon fibre-reinforced polymer (CFRP) composites, under biaxial loading conditions, has been a longstanding challenge and is addressed in this study. Biaxial failure analysis of IM7/8552 CFRP unidirectional (UD) composites is conducted under various stress states. Two widely accepted failure criteria, the interactive Tsai-Wu and non-interactive Hashin failure criteria, are comprehensively assessed with finite element-based micromechanical analysis. High-fidelity three-dimensional representative volume elements (RVEs) are subjected to biaxial loadings with imposed periodic boundary conditions. Carbon fibres are assumed to be transversely isotropic and linearly elastic. The Drucker-Prager plastic damage constitutive model and cohesive zone model are utilised to simulate the mechanical response of the matrix and fibre-matrix interface, respectively. Coulomb friction is assumed between the fibres and matrix after interface failure. Two sets of biaxial loading scenarios (i.e. transverse stress dominated and shear stress dominated) with the associated failure modes are selected for the failure analysis and assessment of these failure criteria. A data-driven failure envelope for the composites under biaxial loadings is developed using a univariate cubic spline function. Failure mode transition points are determined under biaxial loadings. It is found that the micromechanics-based numerical model is effective in assessing these two existing criteria.

Funder

UKRI Strength in Places project, ‘Decarbonisation of Maritime Transportation: A return to Commercial Sailing’

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3