Study of 3D-printed onyx parts reinforced with continuous glass fibers: Focus on mechanical characterization, analytical prediction and numerical simulation

Author:

Nikiema Daouda1ORCID,Balland Pascale1,Sergent Alain1

Affiliation:

1. Université Savoie Mont Blanc SYMME, Annecy, France

Abstract

The 3D printing of continuous-fiber composites is currently relevant to engineers and researchers. This study aims to characterize and predict the mechanical properties of Onyx/glass fiber specimens printed using 3D printing. The work assesses the impact of glass fiber printing parameters on the mechanical behavior of printed parts and proposes analytical and numerical methods to predict mechanical properties. A physicochemical analysis was conducted on 3D printed continuous glass fibers. The study also investigated the impact of fiber printing parameters on composite parts. The results indicate that the 3D-printed glass fibers consist of nylon, continuous glass fibers, and voids (porosity), which range from 58% to 63%, 31% to 38%, and 5% to 8%, respectively. Mechanical characterizations indicate that printing fiber layers in blocks results in superior mechanical properties compared to printing alternating layers of glass fibers and Onyx. Additionally, the concentric mode of fiber printing can be challenging if the ‘start rotation’ parameter is not adjusted correctly. Premature specimen breakage occurred when fiber printing began within their useful length, resulting in a deformation at break that was approximately 34% less, depending on the starting position. The proposed analytical and numerical prediction methods had prediction errors of approximately 7% to 12% and 5% to 7%, respectively. Engineers can use these prediction approaches during the dimensioning phase of 3D printed composite parts.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3