Thermal buckling response and fracture analysis for delaminated fiber reinforced composite plates under thermo-mechanical coupling

Author:

Tian Xinpeng1ORCID,Yao Dong2,Li Qun1

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, China

2. National Key Laboratory of Combustion, Flow and Thermo-Structure, The 41st Institute of the Fourth Academy of CASC, China

Abstract

Fiber reinforced composites are often subjected to severe thermal-mechanical coupling loads. In order to predict the stiffness and strength of the designed composites, thermal buckling response of the delaminated fiber reinforced composite plates and fracture analysis along the delamination front under thermo-mechanical coupling are investigated based on the generalized layerwise plate theory. Delamination between individual layers is considered as discontinuities in the displacement field using Heaviside step functions in the finite element model of delaminated composite plates. Governing equations are derived using virtual work principle and fracture analysis is performed by calculation of the strain energy release rate along the delamination front by means of the virtual crack closure technique. The effect of laying angle, delamination size, and delamination position on the critical thermal buckling temperature of laminated composite plates are investigated. Numerical results reveal that the critical thermal buckling temperature is insensitive to the delamination size less than an ‘irrelevant size’ and then significantly decreases with the increase of delamination sizes. The inside delamination has a greater influence on the critical thermal buckling temperature than the outside delamination. The maximum values of strain energy release rate always occur in the ‘equivalent material direction’ when the delamination is located in the middle of composite plates, while it is determined by laying angle and delamination position together for non-middle plane delamination.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3