Affiliation:
1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, China
Abstract
Carbon fiber-reinforced polymer composites have been widely used in the aerospace industry. However, they are extremely sensitive to crack initiation, propagation and interlaminar delamination which severely reduce their service life. This paper demonstrated that the Mode-I interlaminar fracture toughness could be significantly improved in carbon fiber/bismaleimide composites using a microwave curing process. An increase of about 53.5% in critical load and an increase of approximately 133.5% and 61.2% in fracture toughness and fracture resistance have been achieved, respectively. The microwave manufacturing cycle for composites was cut to 44% of the thermal processing cycle. Dynamic mechanical thermal analysis was performed to investigate the enhanced interfacial strength in microwave-cured composites. The improvement in fracture toughness was attributed to a better interfacial adhesion between resin and fiber, which was investigated by the observation of fracture surfaces with optical microscopes.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献