Micro Computed Tomography based stochastic design and flow analysis of dry fiber preforms manufactured by automated fiber placement

Author:

Ali Muhammad A1ORCID,Khan Tayyab1,Khan Kamran A1ORCID,Umer Rehan1ORCID

Affiliation:

1. Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE

Abstract

The effective design of channels in dry tape preforms is crucial for achieving desired preform permeability for successful resin injection for composites manufacturing using Automated Fiber Placement (AFP) process. Achieving target gaps and their locations in the AFP layup is extremely challenging. This work investigates the correlation between the spatial variability of the preforms and the in-plane permeability using an X-ray Computed Tomography (XCT) based characterization framework. The tomographic images of two different dry carbon tape preforms with different tape widths were used to generate realistic and XCT based stochastic models to be used for numerical permeability predictions. The variability in the tape placement by the robotic head and its effect on preform permeability was also examined through stochastic geometric modeling of the laid preform. A benchmark transient permeability measurement set-up was utilized to obtain experimental in-plane preform permeability through 2D radial mold filling. The in-plane numerical permeability values showed significant scatter, with a coefficient of variance of 75%–130%, which deviated from the experimental measurements by approximately one order of magnitude. These findings strongly re-affirm that the experimental permeability measurement technique based on transient mold filling of dry fiber AFP preforms is complex however, the XCT based stochastic modeling technique is an effective way to estimate the permeability of dry fiber AFP preforms virtually.

Funder

Khalifa University of Science, Technology and Research

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3