Comparative study of carbon fabric reinforced and glass fabric reinforced thin sandwich panels under impact and static loading

Author:

Ugale VB1,Singh KK2,Mishra NM3,Kumar Prashant4

Affiliation:

1. Department of Mechanical Engineering, College of Military Engineering, Pune, India

2. Department of Mechanical Engineering, Indian School of Mines, Dhanbad, India

3. Department of Applied Chemistry, Indian School of Mines, Dhanbad, India

4. Department of Mechanical Engineering, College of Engineering, Pune, India

Abstract

Glass fabric reinforced thin sandwich panel and carbon fabric reinforced thin sandwich panel of thickness close to 2.5 mm were studied to explore an alternative skin material for the outer body of various machines and appliances. The polyester foam Coremat XM of 2 mm thickness was used as core material in the thin sandwich panels. The panels were fabricated by vacuum bagging process and characterized through two plate tests: (i) low-velocity normal impact loading under a drop weight impact test set up and (ii) transverse static loading of a plate. The damage area, indentation depth and permanent depression over damage area, energy absorption capability, load-deflection relation and failure modes were observed under the test. The impact drop test was simulated by LS-DYNA. The properties of glass fabric reinforced thin sandwich panel and carbon fabric reinforced thin sandwich panel were compared with those of 0.8-mm-thick MS sheet, a widely used skin material for the outer body of various machines and appliances.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3