Prediction of injection-moulded flax fibre reinforced polypropylene tensile properties through a micro-morphology analysis

Author:

Lafranche Eric1,Oliveira Vânia M2,Martins Carla I2,Krawczak Patricia1

Affiliation:

1. Department of Polymers and Composites Technology & Mechanical Engineering, École des Mines de Douai, Douai, France

2. Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Guimarães, Portugal

Abstract

Micromechanical models usually applied to predict the mechanical properties of short glass fibre reinforced composites were used to evaluate the Young’s modulus and tensile strength of flax fibre reinforced polypropylene. Due to lack of accuracy between the experimental results and the existing models, a new adjustment to the Kelly-Tyson model was proposed. The changes were based on the understanding of the microstructure obtained in polypropylene/flax fibre composites produced by injection moulding with different flax fibre content. The mechanical properties were interpreted based on real fibre loading, fibre orientation, fibre dimension distribution and morphology of the composites. Lack of fibre/matrix adhesion, strong fibre damage and changes on the crystallization behaviour of polypropylene in the presence of flax fibres affect the mechanical strength, stiffness and elongation of the composites. The Kelly-Tyson’s model used for tensile strength prediction was modified to take into consideration the fibre property variability due to the large distribution of fibre shape ratio induced by the process. Finally, matrix modulus has been adjusted to take into account the change of crystallinity with fibre content. A better description of the mechanical properties is obtained using the proposed approach, resulting indeed in an excellent approximation to the modulus of the composite.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3