The mechanical and physical properties of nylon 6/glass fiber-reinforced hybrid composites manufactured by thermal and ultraviolet-cured pultrusion methods

Author:

Alikhani Hossein1,Sharifzadeh Fatemeh2,Khoramishad Hadi1ORCID

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Iran

2. Mechanical Department, Faculty of Engineering, Alzahra University, Iran

Abstract

In this study, the effect of hybridizing glass fiber-reinforced polymer composites with nylon 6 fibers on the physical and mechanical properties of composites was investigated experimentally. The ultraviolet-cured and thermal pultrusion methods were employed for manufacturing the glass fiber-reinforced polymer and hybrid composite rods containing different volume percentages of nylon 6 fibers at low and high temperatures. The effects of the nylon 6 fibers and the pultrusion methods were investigated on the curing degree, the void content, the diameter expansion, the surface characteristics, and the quasi-static tensile and Charpy impact properties of the composite rods. The ultraviolet-cured hybrid composites showed superior mechanical properties than the thermally cured samples indicating the sensitivity of nylon 6 fibers to high-temperature curing. Moreover, the curing speed of ultraviolet-cured pultrusion was significantly higher than the thermal pultrusion. Delamination and fiber pull-out were the dominant damage mechanisms in the hybrid composites due to the low interfacial strength between the nylon 6 fibers and matrix.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3