Atmospheric pressure plasma effects on the adhesive bonding properties of stainless steel and epoxy composites

Author:

Williams Thomas S1,Yu Hang1,Yeh Po-Ching2,Yang Jenn-Ming2,Hicks Robert F1

Affiliation:

1. Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, CA, USA

2. Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA, USA

Abstract

An atmospheric pressure helium and oxygen plasma has been used for the surface preparation of 410 stainless steel and carbon-fiber epoxy laminates prior to bonding to themselves or to each other. Lap shear results for stainless steel coupons and carbon-fiber epoxy laminates demonstrated an 80% and a 150% increase in bond strength, respectively, after plasma activation. Following 7 days of aging, wedge crack extension tests revealed a crack extension length of 7.0 mm and 2.5 mm for the untreated and plasma-activated steel. The untreated stainless steel had 30% cohesive failure compared to 97% for steel activated with the plasma. Surface analysis by X-ray photoelectron spectroscopy showed that carbonaceous contamination was removed by plasma treatment, and specific functional groups, e.g. carboxylic acids, were formed on the surface. These functional groups promoted strong chemical bonding to the epoxy film adhesive. Atmospheric pressure plasmas are an attractive alternative to abrasion techniques for surface preparation prior to bonding.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3