Examining the bending test properties of bio-composites strengthened with fibers through a combination of experimental and modeling approaches

Author:

Saada Khalissa1,Farsi Chouki1,Amroune Salah1ORCID,Fnides Mohamed2,Zaoui Moussa1,Heraiz Hocine3

Affiliation:

1. Laboratory of Materials and Mechanics of Structures (LMMS), Faculty of Technology, University of M’sila, M’sila, Algeria

2. Department of Mechanical Engineering, Ecole of Skikda, Skikda, Algeria

3. School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China

Abstract

This study explores the relationship between natural fiber filling density (10%, 15%, 25%) and its impact on the bending properties of polymer compounds reinforced with Diss, Sisal and Luffa fibers. Using advanced techniques like fiber analysis and Fourier transform infrared spectrometry (FTIR), the research reveals that a 25% filling density results in the highest stress values (25.61 MPa, 22.21 MPa and 20.88 MPa) for Diss, Sisal and Luffa compounds, respectively, fostering robust bonds in Diss-reinforced polymers. The Artificial Neural Network (ANN) model demonstrates superior predictive capability with correlation coefficients exceeding 0.99 for stress and displacement, outperforming Response Surface Methodology (RSM). Analysis of Variance (ANOVA) underscores the impact of sample section parameters and fiber rate on stress, establishing the significance of type parameters and fiber rate on displacement. This integration of ANN and RSM represents a paradigm shift in predicting bending mechanical properties, advancing our understanding of composite materials for innovative applications.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3