Thermomechanical behavior of adhesively bonded joints under out-of-plane dynamic compression loading at high strain rate

Author:

Sassi Sonia1ORCID,Tarfaoui M12,Yahia Hamza B1

Affiliation:

1. ENSTA Bretagne, IRDL, France

2. Nanomaterials Laboratory, University of Dayton, USA

Abstract

In this study, a new experimental approach in which the deformation, the damage kinetic, and the temperature are measured simultaneously during a high strain rate on adhesively bonded composite joints. Especially, our goal is to quantify the amount heat dissipation during impact and to identify the mechanisms that induce this dissipation. Out of plane dynamic compression tests were conducted on assembled specimens over a range of strain rate from 372 s−1 to 1030 s−1 using the Split hopkinson Pressure Bars technique. The specimen surface temperatures were monitored using an infrared camera. The increase in the strain rate has a dramatic effect on the stress–strain behavior producing a significant heat dissipation in the material. The infrared monitoring provides the spatial distribution of temperature that increase near the adhesive/adherent interfaces of the specimen. The observed temperature increase profiles clearly show that the stress concentration appears in the adhesive area and provide valuable information regarding the damage mechanisms and their role in the heat dissipation during dynamic loading conditions. The dependence of these results on strain rate indicates that there exists a correlation between the thermo-mechanical behavior and the strain rate effect, which might be useful when developping damage models taking into account the energy balance for adhesively bonded joints under impact loading conditions.

Funder

Direction Générale de l'Armement

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3