A proposed model for spark plasma sintering of SiC-Si nanocomposite with different SiC particle sizes

Author:

Heydarian Abtin1,Abdolkarim Sajjadi Seyed1,Johnsson Mats2

Affiliation:

1. Engineering Faculty, Department of Materials Science and Engineering, Ferdowsi University of Mashhad, Iran

2. Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, Sweden

Abstract

In this study, the effect of SiC particle size on the sintering behavior of SiC-Si nano composites fabricated by spark plasma sintering (SPS) technique was investigated and a model was proposed, accordingly. To this purpose, SiC powders with three different particle sizes of 25 µm, 80 nm and 45 nm were chosen. It was expected that hardness of the composites increase with decreasing the SiC particle size; however, the outcomes were interesting and unpredictable. The composite with 80 nm SiC particles indicated the highest hardness. Hardness of the specimen with 25 µm SiC was low because of the large particle size of its reinforcement. While 80 and 45 nm SiC particles are considered as nano particles, the composite with 45 nm SiC particles showed lower hardness due to the growth of SiC powders during sintering according to a proposed model. Two reasons for the growth of 45 nm SiC particles were defined: (i) the fineness of the SiC particles prevented the Si particles to act as a binder between them thus, they agglomerated; (ii) SiC powders were oxidized during mixing procedure and a layer of SiO2 was formed on their surfaces. During sintering procedure, the reaction between SiC and SiO2 was happened and as a result SiO was formed. It caused vapor transportation during sintering leading to necking between particles and in turn, grain growth.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3