Fiber Optic Sensor Development for Real-Time In-Situ Epoxy Cure Monitoring

Author:

Liu Y. M.1,Ganesh C.1,Steele J. P. H.1,Jones J. E.1

Affiliation:

1. Laboratory for Intelligent Automated Systems, Division of Engineering, Colorado School of Mines, Golden, CO 80401

Abstract

Analysis of a new fiber optic sensor based on the principle of Fresnel reflection is presented in order to develop a robust, flexible, readily embedded, high sensitivity and low-cost cure monitoring tool for intelligent control of composite manufacturing. This approach is distinct from previous work on on-line in-situ monitoring sensors in that the transducer is simply the fiber optic/epoxy interface. This leads to a more simple, less intrusive, and lower cost sensing system. The response of the sensor is a function of the mismatch in refractive index between the fiber optic end/resin interface. The refractive index of the resin is a nonlinear function of the temperature and the cure reaction of the resin. The sensing system detects the mismatch in the refractive index and generates a characteristic profile that gives the chemorheological information about the curing resin. Under isothermal cure conditions, the effect of the temperature on the refractive index mismatch can be eliminated. In this situation, the optical response of the sensor is only dependent on the cure kinetics and the state of the cross-linking in the material. A calibration method has been developed to interpret the optical response directly as the degree-of-cure of the resin. This work provides analysis of the fundamental sensor response and correlates it to the material state (degree-of-cure). These results provide a basis for extending the use of this sensor technology for on-line real-time cure monitoring and control.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3