Mechanical characterization and low-velocity impact behavior of flax woven fabric-reinforced polymer composites

Author:

Korkmaz Melih1,Karakuzu Ramazan2ORCID,Korkmaz Mehmet3

Affiliation:

1. Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir, Turkey

2. Department of Mechanical Engineering, Dokuz Eylül University, Izmir, Turkey

3. Department of Textile Engineering, Dokuz Eylül University, Izmir, Turkey

Abstract

Man–made fibers like carbon or glass are main components for fiber-reinforced polymer composites thanks to their high strength and stiffness values. However, man-made fibers are not eco-friendly and can hardly be recycled in the nature. Using a high amount of man-made fibers threatens our nature and poses a significant risk for the future of world. Natural fiber reinforced composite (NFRC) is considered as a good alternative for traditional composites. Therefore, NFRC has been examined to develop materials, which have comparable mechanical properties with the man-made fiber reinforced composites, for last decades. Although lots of studies were carried out on the mechanics of NFRC, a few of them focused on the structural design of reinforcement and their effects on composites performance. In this study, the number of weft densities of reinforcements were differentiated and their effects on the mechanical properties of composites were investigated. Fabrics were produced from flax yarns and composites were manufactured by vacuum assisted resin infusion molding method. The tensile, compression, shear and impact tests were carried out to characterize the manufactured composites. Results show that while increasing number of weft density of reinforcement improves the tensile and compressive strength of NFRC in the weft direction, the tensile strength and elastic modulus of composites in the warp direction were characterized by the crimp percentage values of warp yarns. Moreover, it was determined that the number of weft density in the reinforcement affect the contact force and energy absorption capacity of NFRC.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3