Symbolic dynamics time series analysis for assessment of barely visible indentation damage in composite sandwich structures based on guided waves

Author:

Fakih Mohammad Ali1,Mustapha Samir1,Makki Alamdari Mehrisadat2,Ye Lin3

Affiliation:

1. Department of Mechanical Engineering, American University of Beirut, Lebanon

2. DATA61, CSIRO, Eveleigh, NSW, Australia

3. School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Australia

Abstract

This study addresses the detection and localization of barely visible indentation damage in composite sandwich structures using ultrasonic guided waves. A quasi-static loading was gradually applied on a specimen of carbon fiber reinforced epoxy with honeycomb core, with the resulting dent size varying between 0.2 and 2.7 mm. The fundamental symmetric (S0) Lamb wave mode was excited to interrogate the structure. An anomaly measure was established based on symbolic time series analysis; it was defined as the ratio between the norms of probability vectors obtained from the symbol sequence vectors before and after damage has occurred. The symbolic time series analysis method transforms time series data into symbol sequences according to a pre-constructed symbol space using a set number of partitions. The number of partitions selected was determined based on the maximum Shannon’s entropy approach. An imaging algorithm was adopted in order to localize the damage. The effects of the excitation frequency and the number of partitions on the precision of prediction were investigated. The adopted approach showed high sensitivity to a very small change of 0.2 mm on the surface panel after a quasi-static loading of 2-mm indentation. Furthermore, the ability of the method to detect progressive damage was demonstrated. The results obtained demonstrate that symbolic time series analysis has excellent potential for use in detecting small defects such as barely visible indentation damage.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3