Effects of thermal process conditions on crystallinity and mechanical properties in material extrusion additive manufacturing of discontinuous carbon fibre reinforced polyphenylene sulphide composites

Author:

Lyu Yahui1ORCID,Wu Jiang1,Zhang Haoqi2,Brádaigh Conchúr M. Ó1,Yang Dongmin1ORCID

Affiliation:

1. School of Engineering, Institute for Materials and Processes, University of Edinburgh, Edinburgh, UK

2. Department of Mechanical Engineering, National University of Singapore, Singapore

Abstract

This study investigates the thermal behaviour of discontinuous carbon fibre reinforced polyphenylene sulphide (CF/PPS), additively manufactured by material extrusion, with a focus on the effects of thermal process conditions on the degree of crystallinity, oxidation crosslinking and mechanical properties of CF/PPS from filament fabrication, material extrusion to annealing treatment. The screw extrusion parameters are optimised by performing a thermal analysis of the fabricated filaments. The effect of crosslinking reactions on the crystallinity process in determining the mechanical properties of the printed samples is illustrated by investigating the influence of the printing conditions. Furthermore, the effect of annealing treatment on the semi-crystalline polyphenylene sulphide (PPS) is studied by measuring the degree of crystallinity and viscoelasticity behaviours. Results demonstrate that the flexural properties of the printed CF/PPS composites at elevated processing temperatures are determined by the oxidation crosslinking between PPS chains. These enhance the crystallisation process of semi-crystalline polymers by acting as the nucleating agent first but negatively affect the mechanical properties at higher temperatures because of the detrimental effects of the polymer inter-chain bonding. The maximum flexural strength of printed CF/PPS reached 164.65 MPa when processing at an extrusion temperature of 280°C, a printing temperature of 320°C, and an annealing temperature of 130°C for 6 h. By adjusting the thermal treatment conditions, the degree of the crystallinity and the mechanical properties of the printed CF/PPS composites can be designed, controlled and tailored.

Funder

University of Edinburgh

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3