Effects of core geometry, silica nanoparticles, and polyurethane foam on the mechanical properties of a novel circular-shaped core sandwich panels under compression test: Experimental study

Author:

Shaki Mohammad Hassan1ORCID,Rostamiyan Yasser2ORCID,Seyedi Seyed Masuod1

Affiliation:

1. Department of Mechanical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

2. Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Abstract

For the first time in this paper, a composite sandwich panel with a novel circular-shaped core reinforced with silica nanoparticles (SNPs) is designed and fabricated using the vacuum-assisted resin transfer molding (VARTM) method. Carbon fibers and epoxy resin are utilized to construct the composite sandwich panels, followed by polyurethane foam injection. After fabrication, the sandwich panels undergo uniform compression testing to examine their mechanical behavior and properties. In this study, the effects of various parameters, such as core length, core height, weight percentage (wt.%) of SNPs, and polyurethane foam, on the compressive strength of the structure are evaluated. To validate the results, a finite element simulation of the sandwich panel compression test is performed using ABAQUS software, and the results obtained are compared with experimental data, showing good agreement. The results of this research demonstrate that adding SNPs within a specific range results in a considerable enhancement of the structural strength. Adding SNPs up to 3% leads to approximately a 19% increase in the compressive strength of the structure. However, adding 4 wt.% SNPs results in a decrease of about 12% in the strength of the sandwich panel. Additionally, the core’s geometry significantly influences the control of compressive strength and rigidity of the sandwich panel. In other words, by increasing the core length, the compressive strength increases by 38%, while increasing the core height decreases compressive strength by about 30%. Also, it is found that adding polyurethane foam to the sandwich panel, despite a slight increase in weight, leads to a significant increase in compressive strength by about 32% and postpones its ultimate failure. Eventually, the hybrid specimen exhibits a strength approximately 57% greater than that of the pure foamless sandwich panel.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3