The effect of equal-channel angular pressing (ECAP) on the properties of graphene reinforced aluminium matrix composites

Author:

Güler Ömer1ORCID,Bağcı Nihal1,Güler Seval Hale1,Canbay Canan A2,Safa Hasan1,Yılmaz Taha A3,Taşkın Mustafa1

Affiliation:

1. Metalurgical and Material Engineering Dept., Mersin University, Mersin, Turkey

2. Physics Dept., Firat University, Elazig, Turkey

3. Metalurgical and Material Engineering. Dept., Ataturk University, Erzurum, Turkey

Abstract

In the present study, graphene nanosheets were synthesised by liquid phase exfoliation process, and the obtained graphene was reinforced in the rates of 0.1, 0.2, 0.3 and 0.6 wt.%. After the composites were characterised, they were exposed to Equal Channel Angular Pressing (ECAP) process. While 0.1 wt.% and 0.2 wt.% graphene reinforced composite samples successfully completed the ECAP process, 0.1 wt.% and 0.2 wt.% graphene reinforced composite samples were broken during the ECAP process. Electrical, thermal, and mechanical properties of the composite increased with the increased amount of graphene. The mechanical properties of ECAP-processed samples showed significant increases compared to non-ECAP processed samples. To figure out the effect of the ECAP process, moulds with different channel angles were used, the ECAP temperature was changed, and different passes were performed and the angles of 120° and 90° were used. ECAP-processed samples in both mould angles showed similar mechanical properties. With the increasing ECAP temperature, the mechanical properties of the sample decreased, but its electrical conductivity increased. As the number of passes increased, mechanical properties increased and crack formation in material increased. In addition, it was not possible to successfully remove the matrix composites containing more than 0.3 wt.% graphene from the ECAP process. Especially in the sample containing 0.6 wt.% graphene, brittle fractures were seen during the ECAP process and the sample was divided into many parts. The results showed that the composite responded better to the ECAP process when low amounts of graphene were reinforced in the al matrix. Significant improvements were observed in the properties of these composites after the ECAP process. In this study, the properties of composites with and without ECAP process were extensively investigated. The results were compared in detail with the previous studies. The graphene was produced using a simple method and it was reinforced with the Al matrix with the easiest possible method.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3