A study on the effects of organoclay content and compatibilizer addition on the properties of biodegradable poly(butylene succinate) nanocomposites under natural weathering

Author:

Phua Yi Jing12,Lau Nyok-Sean3,Sudesh Kumar3,Chow Wen Shyang12,Ishak ZA Mohd.12

Affiliation:

1. Cluster for Polymer Composites, Engineering and Technology Research Platform, Universiti Sains Malaysia, Penang, Malaysia

2. School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia

3. Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia

Abstract

Biodegradable poly(butylene succinate)/organo-montmorillonite nanocomposites were prepared at different organo-montmorillonite loadings, using maleic anhydride-grafted poly(butylene succinate) as compatibilizer. Poly(butylene succinate) nanocomposites were exposed to outdoor natural weathering for 180 days. Weight loss and decrease in mechanical properties after weathering revealed the degradation of poly(butylene succinate). Natural weathering caused photo-oxidation on poly(butylene succinate), leading to the formation of degraded products, as manifested in Fourier transform infrared spectroscopy. Gel permeation chromatography showed a significant reduction in molecular weight after weathering. It was noted that poly(butylene succinate) nanocomposite exhibited lower degradability as compared to neat poly(butylene succinate), due to the enhanced barrier properties after the addition of organo-montmorillonite. However, the incorporation of maleic anhydride-grafted poly(butylene succinate) increased the degradability. Degree of crystallinity of poly(butylene succinate) reduced after weathering, as shown in differential scanning calorimetry. Scanning electron microscopy analysis revealed fungal and bacterial colonization on the sample surface. In addition, the isolation and identification of bacterial strain were also performed.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3