Evaluation of delamination damage in carbon epoxy composites under swirling abrasives made by modified internal threaded nozzle

Author:

Balasubramanian M1ORCID,Madhu S2

Affiliation:

1. Department of Mechanical Engineering, R.M.K College of Engineering and Technology, India

2. Department of Automobile Engineering, Saveetha School of Engineering, India

Abstract

Carbon fibre-reinforced polymer composites are finding increased applications in the field of automotive manufacture and aircraft industries due to their appreciative combination of high strength and low weight. The machining of these composites with economically viable and high part qualities requires enhancement in machining strategies. Delamination and surface roughness are the undesirable geometrical defects inherent in abrasive jet machining of layered polymer composites. This investigation focuses on the mechanism of delamination and surface roughness in abrasive jet machining of carbon fibre-reinforced polymer composite. The paper endeavors at the exploration of the viability of imparting swirling motion to SiC abrasive particles by presenting internal threads in the newly designed nozzle. In this research, a novel threaded nozzle was introduced in the abrasive jet machine for making holes on the carbon fiber-reinforced polymer composites with the objective of reducing the delamination and surface roughness. This is a distinctive attempt of its kind and this has brought down the delamination factor considerably and, as a consequence, surface roughness obtained was minimum. Holes were made on carbon fiber-reinforced polymer composite by abrasive jet machining with a modified nozzle with and without an internal thread. The influence of abrasive jet parameters on the delamination factor (bottom and top) and surface roughness (Ra) was investigated. Maximum pressure and minimum SOD cause decrease in delamination and surface roughness in carbon fiber-reinforced polymer composite composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3