Characterization, synthetic generation, and statistical equivalence of composite microstructures

Author:

Sanei Seyed Hamid Reza1,Barsotti Ercole J1,Leonhardt David1,Fertig Ray S1

Affiliation:

1. Department of Mechanical Engineering, University of Wyoming, USA

Abstract

Mechanical behavior and reliability of composites are driven significantly by microstructural variability. Such variability can be present in the form of both morphological and constituent property variability. To understand the effect of this variability on macroscopic mechanical behavior, many statistically equivalent microstructures must be evaluated. This requires the ability to generate such microstructures. In this work, morphological variability was quantified by image analysis of actual microstructures. To reproduce this variability, a methodology was developed in which random microstructures are generated and subsequently adjusted to simultaneously match both short- and long-range statistics of actual microstructures. Synthetic microstructures were generated at a length scale of 70 µm, corresponding to the length scale at which fiber volume fractions of adjacent microstructures are uncorrelated. The utility of this methodology was also demonstrated for larger microstructures containing defects such as alignment fibers, voids and resin seams.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3