Fatigue Response and Modelling of Variable Stress Amplitude and Frequency in AS-4/PEEK Composite Laminates, Part 2: Analysis and Formulation

Author:

Lee C. H.1,Jen M. H. R.1

Affiliation:

1. Dept. of Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, R. O. C.

Abstract

The tension-tension fatigue features at variable cyclic loadings in APC-2 composite laminates of three lay-ups, including cross-ply [0/90]4 s, quasi-isotropic [0/45/90/−45]2 s and angle-ply [±45]4 s, were investigated. The parameters involved are maximum stress, frequency, and stress ratio. First, the fatigue tests of two-step and multi-block loadings were accomplished. Next, based on Marco-Starkey cumulative damage theory, we proposed the nonlinear cumulative damage theory and nonlinear reduced undamage theory associated with damage parameters in Part 1 and developed the well-established fatigue failure criterion of multi-block loading to predict the life due to variable fatigue loadings. The difference of cycle fraction between two damage loading conditions was obtained, so that we could easily shift to different damage curve and predicted the life due to multi-block fatigue loading. The measured lives in glass/epoxy and carbon/PEEK composites are found well close to those predicted by our proposed models.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3