Rare earth-doped lead titanate zirconate grown on carbon fibers by microwave-assisted hydrothermal synthesis

Author:

Silva Ricardo M1,Noremberg Bruno S1,Santana Luiza R1,Alano José H1ORCID,Marins Natália H1,Maron Guilherme K1,Łukowiec Dariusz2,Staszuk Marcin2,Tanski Tomasz23,Carreño Neftali LV1ORCID

Affiliation:

1. Technology Development Center, Federal University of Pelotas, Brazil

2. Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Poland

3. Center for Nanotechnology, Silesian University of Technology, Poland

Abstract

This study aimed to develop a flexible carbon fiber/oxide layer coating composite with improved electrical properties for use in electronic devices. For this, lead titanate zirconate, cerium-doped lead titanate zirconate, and yttrium-doped lead titanate zirconate were grown on carbon fibers via microwaves-assisted hydrothermal synthesis. The performed synthesis presented advantages when compared to conventional routes used in nanoparticles obtention since it allows the morphological control even at low temperatures. Carbon fiber was selected as substrates due to their thermal stability, excellent mechanical properties, chemical characteristics that allow the creation of functional groups on their surface, and good microwave radiation absorption. The composites were investigated by X-ray diffraction, spectroscopy Raman, and field emission scanning electron microscopy. The electrochemical evaluations were made by four-point probe method, cyclic voltammetry, and electrochemical impedance spectroscopy. The syntheses were successful and the carbon fiber coated with lead zirconate titanate had promissory results, with a boost in the electrical conductivity and better capacitance behavior when compared to the undoped carbon fiber, showing to be a good alternative for applications in electrical devices.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3