Determination of the fracture process zone under Mode I fracture in glass fiber composites

Author:

Tsouvalis Nicholas G.1,Anyfantis Konstantinos N.1

Affiliation:

1. Shipbuilding Technology Laboratory, School of Naval Architecture and Marine Engineering, National Technical University of Athens, Athens, Greece

Abstract

This study provides a simple yet effective procedure for the characterization of the fracture process zone (FPZ) developing in the interface of unidirectional laminates under Mode I delamination fracture. Double cantilever beam (DCB) coupons have been manufactured and tested. Three data reduction schemes available in the literature have been utilized for the calculation of the energy release rate (ERR) magnitude as a function of crack extension and the corresponding R-curves have been constructed. The R-curves were then reconstructed in terms of the experimentally registered pre-crack tip opening displacement ( δ*) and analytical functions have been used to describe their concatenate trend. The J-integral approach was then applied over the analytical functions to derive the corresponding bridging laws that describe the FPZ. The derived bridging laws were appropriately modified according to three different traction–separation models and implemented into user-developed interface finite elements (UEL) for the simulation of the fracture tests in ABAQUS® commercial software. Comparisons between numerical and experimental results have shown that the proposed straightforward procedure leads to an effective traction–separation law that can be used as a material property of the modeled interface.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3