Affiliation:
1. Department of Aerospace Engineering University of Bristol Queens Bldg. , University Walk Bristol BS8 1TR, U.K.
Abstract
Weibull theory predicts a higher strength in bending than in tension. How ever it assumes that failure initiates from a critical defect, whereas many unidirectional composites fail gradually in bending. A model has been developed of the composite as a bundle, each element of which consists of a small bundle of fibres. The resin is assumed to stabilise the bundle against buckling under compression, whilst allowing the individual elements to split and behave independently in tension. This model also predicts higher strength in bending than in tension, with a ratio of similar order of magnitude to that pre dicted by Weibull theory. The new model provides an explanation for the different strengths in bending and tension which is consistent with the progressive, noncatastrophic failure process which is often observed in bending tests of unidirectional composites.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献