Fabrication and characterization of poly(ɛ-caprolactone) coated silicate and borate-based bioactive glass composite scaffolds

Author:

Deliormanlı Aylin M1

Affiliation:

1. Department of Materials Engineering, Manisa Celal Bayar University, Turkey

Abstract

In this study, silicate 13-93 and borate based 13-93B3 bioactive glass scaffolds with high porosity and interconnected pore structure (pore size 100–500 µm) were prepared by foam replication method. In order to improve the mechanical properties, the scaffolds were coated and infiltrated with a poly(ɛ-caprolactone) (PCL) solution at different concentrations (5, 10, and 20 wt%). Results revealed that the mechanical properties of the scaffolds were significantly improved by the PCL coating. The addition of 10% PCL coating led to approximately 10-fold increase of compressive strength in comparison with noncoated scaffolds. The bioactivity of scaffolds upon immersion in simulated body fluid was maintained in the PCL-coated scaffolds at all concentrations; however, a decrease in the formation rate and amount of crystalline hydroxyapatite was observed as the PCL concentration was increased in the coating layer. Degradation rate of the borate-based bioactive glass scaffolds was tailored by the PCL coating. It is concluded that the fabricated bioactive composite scaffolds represent promising candidates for bone tissue engineering applications.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3