Affiliation:
1. School of Materials, University of Manchester, UK
Abstract
Current state of the art within textile truss structures requires a variety of production, assembly and joining processes to conclude in a fully integrated truss configuration. This approach sees the joining and bonding of separate struts to node parts. The node is the connecting area which accommodates the strut-to-strut intersections. A production process of separate truss components (struts and nodes) inherently has constraints, such as increased labour, bonding issues and longevity of product. In the development of a fully integrated textile truss, the utilisation of conventional weaving technology and production principles allowed the development of the three-dimensional woven nodal truss structure. The three-dimensional woven nodal truss structure’s node and nodal segmentation, defined by boundary lines provided defined areas within the weaving width, length and depth for the assignment of weave architectures. The commonalities within the production of varying strut-to-strut intersections and strut-to-strut variable dimensions within a T-shaped and K-shaped nodal configuration provide the foundations for the development of elementary nodes for other three-dimensional woven nodal truss structures. The development of the generic procedure and application of the three-dimensional-to-two-dimensional-to-three-dimensional nodal structure production process and elementary nodes will be presented within this article.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献