Modeling of thermal residual stress in environmental barrier coated fiber reinforced ceramic matrix composites

Author:

Abdul-Aziz Ali12,Bhatt Ramakrishna T13

Affiliation:

1. NASA Glenn Research Center, Cleveland, USA

2. Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, USA

3. US Army Vehicle Technology Directorate, AMSRD-ARL-VT-SG, Cleveland, USA

Abstract

For SiC/SiC composites to replace metallic materials in future turbine engines, prime reliant environmental barrier coatings (EBCs) are required. However, due to the mismatch in thermal expansion and elastic modulus between the substrate and the coating, thermal residual stresses are generated in the coating after processing as well as during exposure to turbine engine operating conditions. The nature and magnitude of the thermal stresses will have a profound effect on the durability and reliability of the EBC. To estimate the magnitude of in-plane ( x- and y-directions) and through-the-thickness ( z-direction) thermal residual stresses in the coating, a finite element model (FEM) was developed. Using FEM, the residual stresses were predicted for three multilayered EBC systems considered for the SiC/SiC composites: (1) barium strontium aluminum silicate, (2) ytterbium disilicate, and (3) ytterbium monosilicate. Influence of thickness and modulus of the coating layer on the thermal residual stress were modeled. Results indicate that thermal residual stresses in the SiC/SiC composite substrate are compressive and in all the three coatings tensile. Further examination indicates that in the z-direction, tensile stresses in all three systems are negligible, but in-plane tensile stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. Comparison of predicted thermal residual stresses in the three systems shows that the ytterbium monosilicate system has the highest stress (~395 MPa), while the other two systems averaged about 80 MPa in one of the coating layers. A parametric analysis conducted indicates that lowering the modulus of the coating can lower the thermal residual stresses.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3