The cyclic response of circular reinforced concrete column to foundation connections strengthened with shape memory alloy bars

Author:

Miralami Mahdieh1,Esfahani M Reza1ORCID,Tavakkolizadeh Mohammadreza1,Khorramabadi Reza2,Rezaeepazhand Jalil2

Affiliation:

1. Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

This study presents a new method for strengthening the circular reinforced concrete (RC) column to foundation connections with shape memory alloy (SMA) bars and carbon fiber reinforced polymer (CFRP) sheets. In the experimental part of the study, three specimens of RC column-foundation connections were cast and tested. One specimen was used as the reference specimen without strengthening. Two other specimens were strengthened with longitudinal SMA bars and CFRP sheets. These specimens were under a constant axial compressive load and cyclic lateral displacements, simultaneously. Next, initial stiffness, energy dissipation capacity, lateral load capacity, ductility, and residual displacement of the specimens were investigated. Due to the superelastic behavior of SMA bars, the residual displacement of column-foundation connections was considerably less than that of the reference specimen. Compared to the reference specimen, the SMA-strengthened and SMA-CFRP-strengthened connections recovered 71.59% and 76.57% of the residual displacement. Therefore, SMA bars were able to recover residual displacements under cyclic loading. Also, the combination of the SMA bars with CFRP sheet was a promising solution for enhancing the amount of the energy dissipation, lateral load capacity, initial stiffness, and ductility parameters. Compared to the reference specimen, the energy dissipation, lateral load capacity, initial stiffness, and ductility ratio parameters of SMA-CFRP-strengthened connection increased about 43.45%, 76.20%, 81.69%, and 242.45%, respectively. In the numerical part of the study, a subroutine was applied for modeling the SMA materials. For the analysis, this subroutine was linked with ABAQUS software. The numerical results showed a close correlation with the experimental results.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3